
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Solving Water Pouring Problem with Branch &

Bound Algoritm

Jonathan Christhoper Jahja 13519144

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail : 13519144@std.stei.itb.ac.id

Abstract—Water pouring problem is a common problem that

has existed for a long time. The problem uses a simple

mathematical and logical concept. The most common variation of

this puzzle and the variation that this paper will observed

consists of 3 jugs of water that have different capacity. The jugs

are irregularly shaped and unmarked, so it isn’t possible to

accurately measure any quantity of mater in the jug. This paper

will show how to solves the water pouring problem using branch

and bound algorithm.

Keywords—Algorithm, cost, goal, branch, water, jug.

I. INTRODUCTION

The water jug problem or the water pouring puzzles is a
common problem that dates back into 1960s[1]. It is a famous
puzzle that usually used for teaching kids problem-solving
skills. The puzzles use basic mathematical and logical
concepts. There are many variations that was used, but the
most common ones are the three jugs variation and the two
jugs variation.

The three jugs variation has the following rules, there are
three jugs that have each capacity of 3, 5, and 8 litres. The jugs
have irregular shapes and are unmarked, so the amount of
water inside of the jugs couldn’t be measured. The only way to
determine the amount of water is when the jug is full or water
left inside the jug from pouring into another jug. Goal of this
puzzle is to divide the water so the 8 and 5 litres jug has 4 litres
of water and the 3 litres jug is empty. The puzzle starts with 8
litres jug full of water and then we can pour the jugs back and
forth into each other to get the goal state. There are no extra
water or loss of water when pouring. This paper will use the
three jugs variation because of the familiarity it holds.

Meanwhile the two jugs variation has similar rules, the
main difference is in this variation there are taps and sink. So
we have the option to fill the water into full or emptied the jug.
Usually there are only 5 litres jug and 3 litres jug, and both
starts empty. The goal is to have 4 litres of water inside the 5
litres jug and the 3 litres jug empty. Amount of water provided
is infinity so you can fill and empty the jugs multiple times.
This puzzles are also famous when it is featured in the movie
Die Hard: With a Vengeance in 1995. In the movie, they use
the two jugs variation.

Branch and Bound algorithm is an algorithm design
paradigm which is generally used for solving combinatorial
optimization problems. These problems are typically
exponential in terms of time complexity and may require
exploring all possible permutations in worst case. The branch
and Bound algorithm technique solves these problems
relatively quick[2]. Branch and Bound algorithm can solve
problems like 1/0 knapsack problem, sliding puzzle, and route
finding even though it’s not the most efficient. This algorithm
measure cost for each steps and expands on the step that has
minimum cost. The formula to measure the cost is different for
every problem.

II. BASIC THEORY

Branch and Bound algorithm is a combination of the
Breadth First Search algorithm and least cost search[4]. For
instance, the Breadth First Search is expanding the nodes based
in FIFO order, so the first node that is founded are being
reviewed first. Meanwhile in Branch and Bound, the expansion
is based on the order of the cost of each node.

Besides BFS, B&B algorithm is also similar to
backtracking algorithm. Both algorithm find solution by
creating a state tree and both algorithm eliminate nodes that
aren’t leading to the solution or goal. The difference with
backtracking is that backtracking doesn’t use optimization
meanwhile B&B measure each possible solution with a cost.
The B&B and backtracking expansion are also different like
with BFS, because backtracking uses BFS when expanding the
nodes.

The cost is basically to measure the closeness of a state to
the goal state. It usually calculated by heuristically. The
formula to measure the cost is usually different for each
problem. So the optimization and efficiency is based on the
formula that was used. B&B algorithm has function that
measure a bound for each node, this function is called bound
function. It will eliminate or ignored every node that doesn’t
lead to optimal solution. In the water pouring problem, the cost
will be used as the lower bound because in this problem we are
trying to find the minimal steps to get to the goal. Therefore the
algorithm will eliminate or ignore every node that has cost
bigger than the lower bound.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

For instance, in the following is steps for B&B algorithm
implementation for tile sliding puzzle.

Fig. 2.1 Example of Tile Sliding Puzzle

Each node from the state tree will represent every possible
movement from the empty tile. Formula for the node will be
measure is,

c(i) = f(i) + g(i) (1)

c(i) : the cost for the node

f(i) : the distance between current empty tile position and
the original position

g(i) : the sum of tile that are not

Algorithm starts by creating an empty queue. With the
formula we can expand the state root as shown in the
following,

Fig. 2.2 Expansion of state tree from the origin state

As shown in Fig. 2.1, the root has 4 child node we can
insert to queue with the order the lowest cost is in the head of
the queue. We can observe that the lowest cost of all possible
moves is the 4th node with the cost of 3, so the 4th node is the
head of the queue. By following the rules of B&B algorithm,
we continue by reviewing the head of the queue. If the head
isn’t the goal, we expand it again and insert the new found
node by order of the cost it has. Algorithm will loop this
sequence until the head is the goal or until the queue is empty
meaning there are no solution. In the following are the results
of the tree expansion,

Fig. 2.3 The complete expansion until finding the target state of the puzzle

After reaching the target, we can measure its cost with

c(23) = f(23) + g(23) = 3 + 0 = 3 (2)

Because the cost of the target state is 3, we can set this as
the lower bound and eliminate other states or nodes that have a
cost bigger than 3. In this case all of the states left have the cost
of 5, so we can eliminate all of other possibilities of expansion
leaving one solution only.

III. ALGORITHM IMPLEMENTATION

To implement Branch & Bound Algorithm, first we need to
determine the cost formula to measure each states or nodes. In
water pouring problem, we can use the goal state as the base to
count the cost. So for each state we can count the difference
between the volume of water it holds currently and the goal.
For instance, the jugs in original state each consist 8 litres, 0
litres, and 0 litres of water. The target is 4 litres, 4 litres, and 0
litres of water in each jug. By measuring the difference
between two states we get

|8-4| + |0-4| + |0-0| = 8 (3)

We got the main formula to count the cost, but it isn’t
enough because the algorithm can expand the same node that it
already observed multiple times if that state is close enough to
the goal. To prevent the expanding the same node, we can add
one more variable which is the amount of pouring that has been
done. With this extra cost, the state that is the same with the
previous state will have more cost because the amount of step
to get to the latest state is bigger and we need the shortest step
to the solution. In simpler words the lower you go in the tree,
the bigger its cost. Following is the formula to measure the
cost,

c(i) = f(i) + g(i) (4)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

c(i) : the cost for the state

f(i) : the amount of pouring to get to this state

g(i) : the difference of quantity of water between this state
and the goal

By using this formula, we can finally construct the state
tree starts from the root which is the original state from each
jug. In this case, we will also avoid expanding to a state that
has been founded before, because the possibilities of a state
always going to be merely the same. For convenience, nodes
will represent the state of each jug by the current amount of
water it holds in the following order, 8 litres jug, 5 litres jug,
and 3 litres jug. The paper will also name the 8 litres jug, 5
litres jug, and 3 litres jug in the following A, B, and C.

Fig 3.1 Expansion of the root state

In Fig 3.1, the expansion of the root only resulted in two
possible moves, because B and C are empty. Then insert the 2nd
and 3rd state into the queue with 2nd state on the head of the
queue because 2nd state has a cost of 3 which is lower than the
cost of the 3rd state. Then we continue by reviewing the head of
the queue which is the 2nd state.

Fig 3.2 Expansion of the 2nd state

 From Fig 3.2, the expansion resulted to the 4th and 5th state
each with a cost of 10 and 8. The 8 0 0 states weren’t included
as possible moves because that is the previous state. Then
insert the new found nodes into the queue, that makes 5th state
to be the new head. After repeating these steps for until the
goal is found we will get the following tree,

Fig 3.3 The full state tree

By observing the Fig 3.3, the number of the nodes represent
the order they are being founded. The result that was found is
in the 16th state with the cost of 7, with the path starts from 1-2-
5-7-8-14-15-16. The 4th, 6th, 12th is being terminated because
the only possible from the expansion is 5 0 3 or 3 5 0 which is
already found before. Meanwhile the 13th state is terminated
because its cost is higher that the goal and every state that has
the higher cost will be terminated or ignored.

From expanding the 5th state, you will get the new queue
with the new head of 7th state. Then expanding the 7th state, we
will only get the 8th state. It is because the only other possible
state is 8 0 0 which is the root. The new head of the queue is
the 3rd state since the cost of 7th state is 12. 3rd state expands to
9th state with the cost of 4 so it becomes the new head of the
queue. Same as before, 9th state expands to 10th state then the
10th state expands to the 11th and 12th state. The 11th state has
the lower cost so it expands to 13th state with the cost of 13,
makes the 8th state to become the new head.

From here the expansion becomes straightforward because
the rest of the state cost lower than 13. 8th expands to 14th then
to 15th and finally expands to 16th state which is the goal. The
16th cost has a cost of 7 which will become the lower bound, so
every other node that has cost higher than 7 will be eliminated.
The only state left is 13th state that has cost higher than 7 so it
is eliminated. That left us with only one path that makes it the
most optimal path to get to the goal.

This algorithm can be used not only for this occasion, you
can have variate the root and the goal. But not all variance can
have a solution. This problem or puzzle only have solution if
and only if the desired volume is a multiple of the greatest

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

common divisor of all the integer volume capacities of jugs.
This principal is based on Bézout's identity[4].

IV. CODE IMPLEMENTATION

This paper will show the implementation of this algorithm
using the Python programing language.

Fig 4.1 Output of the Branch & Bound algorithm using Python

In Fig 4.1, we can observe that the program also has the
same exact solution of the manual search. In the following is
the Branch & Bound algorithm code in Python,

Fig 4.2 Code implementation of Branch & Bound algorithm

In the code we need to initialize the queue containing the
root state, empty list of states that has been observed, and the
list of all paths that leads to goal (notice that this is a list
because there can be multiple solution for a problem). The
writer uses object oriented programming for defining a state as
an object. State object has attributes of list of jugs, the cost, the
id state, and the parent id of the state. The jug is also defined as
an object that have attributes of max capacity and current
amount of water it holds.

In summary, the algorithm just implements the basic theory
mentioned in past section. The main loop of while works in
the following steps,

a) Get the head of the queue to be reviewed.

b) Insert the state into the list of observed states.

a)

c) Check if current state is the goal, if it is the goal we
need to check if the cost if it is below the lower bound. This to
handle if there are multiple steps that leads to goal, we just get
the lowest one.

d) If it isn’t the goal, compare the cost to the lower
bound. If its higher don’t expand the state, else continue
expanding the node by finding possible movement that hasn’t
been founded before.

e) Insert the new found states in order of the cost to the
queue.

b)

f) Repeat a-e steps until the queue is empty.

We can observe the alteration of the queue by printing it
each iteration like in the following figure,

Fig. 4.3 The queue in the algorithm

In Fig. 4.3, we can observe the order of the states being
reviewed until the goal is found. Each state is represented by
the “jugs-cost”, that’s why the queue is ordered by the cost.

V. VARIANCE OF THE PROBLEM

To demonstrate the algorithm, this paper will use another
variance of the jugs.

A. The first variance

In this first case we will use a 12 litres jug, 5 litres jug, and
2 litres jug. The goal is to get a state of 6 5 1 in each respective
jug. The following is the state tree resulted by using the
algorithm,

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Fig 5.1 State tree of the 12 litres, 5 litres, and 2 litres jug.

Because there are only 3 jugs, the state tree from Fig 5.1
and Fig 3.3 will look similar. Same as before after we found
the goal in the 13th state, we can eliminate the expansion from
8th state because the cost of 8th state is higher than the lower
bound which is 6.

We will find the same result if we use the program like in
the previous section. The following is the output and the queue
iterations of the program,

Fig 5.2 Output of the program with the 12 litres, 5 litres, and 3 litres jug

As observed in Fig 5.2, the order of queue matches the
order of the reviewed state in the state tree. This proofs that the

algorithm in the program works exactly like the manual
algorithm.

B. The no solution

In this case, we will observe when there is no solution of
the puzzle given. The capacity of three jugs are 12 litres, 6
litres, and 4 litres. The goal to achieve is 7 5 0 in each
respective jug. State tree resulted from the expansion of root is
the following and the result from the program,

Fig 5.3 State tree and result of the program with the 12 litres, 6 litres, and 2
litres jug

As we can observe from Fig 5.3, the state tree has
eliminated all the end state because there are no new possible
movement that hasn’t been found in previous states. We can
proof there are no possible solution by finding the greatest
common division of 12, 6, and 2 which is 2. So based on the
terms of having a solution is the target of this problem must be
a multiple of 2 in which the target of 7, 5, and 1 is not.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

VI. CONCLUSION

The three water jugs puzzle or the water pouring problem is
a simple mathematical problem. There are many other
variations of this puzzle like the two jugs variation with the
sink and taps.

Because the solution of this problem can be in a form of
optimization of combinatorial possibilities, we can find the
optimal solution with many algorithms. Algorithm like brute
force, graph search like DFS and BFS, greedy, and in this case
Branch and Bound algorithm. Branch and Bound algorithm
works like backtracking but each node has a cost that can be
compared to the bound we assign. Order of the expansion also
follows the cost by state with the lowest cost are expanded
first. For this problem we use lower bound, so we can eliminate
any state that has cost higher than the lower bound. Another
bound is that we can avoid expanding to a state that is already
founded before. This is because the same state will always
have the same exact expansion even in different level of the
tree.

Cost of each state can be measured by counting the
difference between the current jugs water quantity and the goal
in addition with the amount of pouring that was needed to
reach the corresponding state. After the goal is found, we can
assign the cost of the goal state as the lower bound to eliminate
other node. This algorithm can also be used to other variation
of water capacity of the jugs. For a variation to have a solution,
the desired target must be a multiple of the greatest common
divisor between all the capacity of the jugs.

This paper shows that the most common problem can be
solve by algorithm. Therefore algorithm aren’t just for software
development, but if used correctly it can solve many other
problems.

REFERENCES

[1] https://mathworld.wolfram.com/ThreeJugProblem.html. Accessed on 10
May 2021.

[2] https://www.geeksforgeeks.org/branch-and-bound-algorithm/. Accessed
on 10 May 2021.

[3] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Branch-and-Bound-2021-Bagian1.pdf. Accessed on 10
May 2021

[4] https://archive.org/details/bub_gb_RDEVAAAAQAAJ. Accessed on 11
May 2021

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bekasi, 11 Mei 2021

Jonathan Christhoper Jahja 13519144

https://mathworld.wolfram.com/ThreeJugProblem.html
https://www.geeksforgeeks.org/branch-and-bound-algorithm/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Branch-and-Bound-2021-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Branch-and-Bound-2021-Bagian1.pdf
https://archive.org/details/bub_gb_RDEVAAAAQAAJ

